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Abstract-New developments in a method of modeling frequency-depedent material damping and
modulus in structural dynamics analysis are reported. The fundamental feature of the general method
is the introduction of augmenting thermodynamic fields (ATF) to interact with the mechanical
displacement field of continuum mc-ehanics. These ATF arc directly motivated by the "internal state
variables" of materials science. The coupled partial ditferential equations which govern the dynamic
behavior of a uniaxial rod are numeri<:ally solved within the computational framework of the finite
element method. resulting in "ATF-damped" finite elements. Previous work in the development of
this modeling tc-ehnique is characterized by the usc of a single augmenting tield, with application to
lightly-damped rods. beams and truss structures. New developments include: (I) demonstration of
the ability to n1lldelthe behavior of high-damping materials; and (:!) the usc of multiple augmenting
fields to model materials whose behavior d.:p'lrts signilicantly from that of standard anelasti<: solids.

NOM ENCLATliRE

AI,) allinity. thermodynamically C(lnjugat.: to augm.:nting th.:rmodynamic field
i\ AT!' lirst-onkr e1em.:nlor syst.:m matrix ("augment<:d mass matrix")
H invers.: of Ihe relaxali,'1l lime .:onstanl al .:onslanl slrain
n AIT z.:roth-onkr elem.:nt or syst<:m matri.' ("augm.:nted stiffness matrix")
B coupling matri.' Ihat relal.:s II to .:qualions of evolution for II
/;'. complex modulus
L' storage modulus
E" loss mo,lu!us
1-:, relaxed (low-fr.:qucncYI Young's modulus
E, unrelax.:d (high-fr.:qu.:ncy) Young's modulus
I. constant of proportionality belw.:en th.: rale of <:hang.: of an augm.:nting lield and the eorr.:sponding

allinity
L r tOlallength of rod
p vector of dis<:n:t.: ATF displa<:ements
II v,-etor of dis.:rete mechanical displacements
lI(x) me<:hanieallongitudinal displacement field for uniaxial rod element
.\ indep.:ndent variable for uniaxial rod element. rderence position of mass partiele
x ve<:tor of e1ell1cnt or global dcgrccs of frccdom (combincs p and ttl
2 mat.:rial propcrty thaI couples an augmcnting field to thc longitudinal normal stress
,j matcrial property thai eouplcs an augmcnting field to the corresponding atlinity
t1 relaution magnitudc
,;(x) longitudinal normal strainlicld in uniaxial rod clement
'1 frequcncy-dependent material loss fa<:tor. ratio of loss mudulus to storage modulus
;'(x) augmenting lidd. gradient of ~(x)

I. <:omplcx eigenvalue
I' mass density in the rclerenee contiguration
11( t) longitudinal normal slress lidd in uniaxial rod element
OJ radian frequency
~,(x) ith augmenting thermodynamic lidd (ATF)
C modal damping ratio.

1. INTRODUCTION

Vibration damping is essential to the attainment of performance goals for a variety of
advanced engineering systems. In common built-up structures which operate in the atmo­
sphere, air damping and joint damping typically dominate system damping. However,
material damping can also be an important contributor to overall damping in many
applications. such as precision spacecraft structures in orbit. While considerable effort has
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gone into the development of high-damping non-structural and structural materials for use
in aerospace vibration control. sensitivity to temperature and frequency complicates their
use. The development of analytical tools capable of dealing directly with frequency-depen­
dent material properties in particular is an area of current research \,ith potential for high
pay-ofT.

Current popular treatments ofdamping in structural dynamics are unable to reproduce
the fundamental freq uency-dependent behavior of real materials. However. structural dyna­
micists are the unintended beneficiaries ofa sizable literature on material damping (Ashley.
1982). For many years. crystallographers and metallurgists have used "internal friction"
as a probe into the underlying structure of materials. By measuring damping as a function
of frequency. temperature. deformation type and amplitude. they have imestigated the
mobility and activation energies of various microstructural features of materials. These
researchers have identified a multitude of internal variables and relaxation mechanisms that
range. in geometrical scale. from crystal lattice dimensions to structural dimensions and. in
temporal scale. over a similarly broad range (Nowick and Berry. 19n: Zener. 1948).

This observation provided the motivation for the initial development of the augmenting
-thermodynamic fields (ATF) modeling method (Lesieutre and Mingori. 1990: Lesieutre.
1989)-'1 time-domain continuum model of material damping that preserves the charac­
teristic frequency-dependent behavior of real materials (damping and modulus)-a phys­
ically-motivated model fully compatible with current finite clement structural analysis
methods. This paper reports new developments in the ATF modeling method. speciflcally
the capabilities to model the behavior of high-damping materials and. through the usc of
multiple augmenting fields. the behavior of materials that depart significantly from that of
standard anelastic solids. These results indicate that the ATF method may he an dfective
way to accommodate frequeney-depemknt material properties in engineering structural
design and analysis.

2 RELATED RESEARCII

Severalmdhods for incorporating material damping into structural models have heen
used. amI continue to be used within the engineering community. These methods include
viscous damping. frequency-dependent viscous damping. complex modulus. hysteretic
damping. structural damping. viscoelasticity. hereditary integrals and model damping (Bert.
1<)73: Hohhs. Inl). Each has some utility. hut each sufl"crs from one flaw or another.
Although SOllle potentially accurate models e.xist (e.g. viscoelasticity). they arc not widely
used in the engineering comlllunity perllaps because of the lack of physical motivation
for. or the difliculty of usc of. such models.

The need to hetter accommodate frequency-dependent material properties in engin­
eering structural dY~lllamic analysis has motivated several new relevant developments.
Important results in the recent literature include those reported in Golla and Hughes (1<):-151.
McTavish and Hughes (I<)H7). Bagley and Torvik (19H3). Torvik and Bagley (1987).
Padovan (19H7) and Segalman (1987).

Golla. Hughes and McTavish (GHM) developed a time-domain tinite element tn:at­
ment of linear viscoelasticity that is most closely related to the subject ATF method. The
ATF method is primarily distinguished from tht: GHM approach in that it is a direct timt:­
domain formulation. amenable to numerical treatmt:nt using conventional tinite clement
methods. Like ATF. GH M employs additional coordinates to more accuratcly model
damping. Howcver. the "dissipation coordinates" of GHM arc internal to individual
elements. while the augmenting thermodynamic tields of ATF are continuous from element
to element.

The core of Bagley and Torvik's material damping model is the use of fractional time
derivatives in material constitutive equations. Their development was motivated by the
observation that the frequency dependence observed in real materials is often weaker than
the dependence predicted by first-order viscoelastic models. Padovan recently demonstrated
efficient. stable transient solution algorithms for finite element simulation of viscoelastic
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problems involving fractional operators. However, the computational requirement to store
a truncated time history seems tantamount to the introduction of additional coordinates.

Segalman addressed the calculation of stiffness and damping matrices for structures
made from linear viscoelastic materials. His is essentially a perturbation technique that
avoids the introduction of additional coordinates. The resulting stiffness and damping
matrices are. however. generally unsymmetric. and the assumption of"small viscoelasticity"
is likely to limit the utility of the approach.

In recent years. the modal strain energy (MSE) modeling method for estimating the
damping of materials and structures from the measured damping of constituent materials
has continued to grow. However. all of the preceding approaches have advantages over this
now-conventional MSE method in that they are time-domain models. modal damping may
be calculated concurrently with model frequency (no look-up tables or iterative procedures
are required to converge on both). and the resulting complex modes more accurately retlect
the relative phase of vibration at various points on a structure.

3. UNIAXIAL ROD VIBRATION

As previously noted. the physically-significant "internal state variables" of materials
science playa central role in this work. motivating the introduction of augmenting ther­
modynamic tields (ATF) to inh:ract with the mechanical displacement field. Coupled
material constitutive relations and partial ditTerential equations (PDE) of evolution <ire
developed for a uniaxial structural rod and the rDE arc solved numerically using the finite
dement method.

The results of an investigation of two cases of interest arc described herein. The first
case addresses the applicability of the ATF modeling method to high-damping materials.
while the second <\ddresses the usc of multiple augmenting tields to approximate material
behavior that exhibits frequency-dependence weaker than that of a standard anelastic solid. In
both cases. Fourier analysis yields an equation for the ctl'eetive complex modulus of a
material described using augmenting fields. and the resulting expected relationship between
damping and frequency is verified through tinite element solution of free vibration eigen­
value problems.

3.1. High damping materials: single ATF
3.1.1. Gorerning equations. Consider the case of one-dimensional motion. cor­

responding to longitudinal vibration of a thin rod. The mechanical displacement along the
rod is denoted by u(.'(), the longitudinal normal strain by e(x) = u'(x), and the rod has
uniform mass density p and unrelaxed modulus of elasticity Eu• A single augmenting
thermodynamic field. ~(x). is introduced. The fields thermodynamically conjugate to e(x)
and ~(x) are the stress. u(x), and the affinity, A (x). The affinity can be interpreted as a
thermodynamic "force" driving ~ towards equilibrium. The material property J describes
the strength of the coupling of the two dependent fields, tI and ~. Analogously, ~ is the
material property that relates local changes in A to those in~. Following Nowick and Berry
(1972) and Lesieutre and Mingori (1990), the material constituti,:,e equations may be found
as:

U = Euf.-c5~

A = Ji;-~~.

The usual one-dimensional stress-strain constitutive relations are seen to be augmented by
an additional term in ~. The equation of evolution for the mechanical displacement field is
developed from considemtion of momentum balance (with zero body forces assumed). The
equation of evolution for the augmenting thermodynamic field. ~(x). is found by assuming
that the local rate of change of ~ is proportional to A or. equivalently. that the rate of
change of ¢ is proportional to its deviation from a local equilibrium value. .; (that value of
¢ at which A = 0). The result is a first-order ditferential equation:
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This is a rdaxation equation. and describes how the augmenting field evolves towards a
new equilibrium state through a finite-rate kinetic process. The material property B is the
inverse of the relaxation time constant (at constant strain). A material modeled using a
single augmenting field is essentially a continuum version of a standard anelastic solid.

The resulting partial differential equations of evolution couple II and ~ :

( I )

A bilinear variational principle that generates these equations has also been developed
(Lesieutre. 1992). and it leads to insight concerning the boundary conditions on the mech­
anil-'al displacement and augmenting thermodynamic fields. The augmenting thermo­
dynamic field is essentially an internal field. i.e. there arc no e:\plicit boundary conditions
that it alone must satisfy. However. the mechanical displacement field must satisfy either
displacement ("geometric") or stress ("natural") boundary conditions at each end of the
rod. as is the case in undamped structural dynami\:s. Note that the stress boundary condition
docs involve the augmenting licld. ~.

As shown in Lesieutre (19R9) for small damping. the damping and etlcctive modulus
for a material described by eqns I arc frequency-dependent. An approximate equation for
the loss factor. '1. is:

The peak loss factor is approximately equal to cr/2£uy. and is observed at lIJ = B.
For an arbitrary level of damping. similar analysis results in the following expn:ssion

for the complex modulus of the material:

(
J'iY.) (., «(!JiB))

£*=E'+iE"= £u-I+«(I)/B)' +i (C)-/1) I + (lIJ/B) , .

Defining the relaxed (low-frequency) modulus. £,. as:

15'
£, = £u-

and the rel'lxation strength. d. as:

)"'( -
Do = E~'~ •.,Y.

the expression for the complex modulus may be expressed alternatively as:
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The loss factor may subsequently be found as the ratio of the loss modulus to the storage
modulus:

(2a)

where the peak loss factor. 'Imw and frequency at which this peak is observed. 8. are given
by:

.1
'1",.\, = 2Ti+~)T:: and

_ B
B= -----;.

(I +.1) I -
(2b)

These results are identical to those presented in (Nowick and Berry. 1972) for a
standard anelastic solid. Light coupling bctwccn the mcchanical displaccment tickl and the
augmenting thermodynamic field results in small damping. with a peak loss factor of
approximately half the relaxation strength. at a frequency equal to the inverse of the
relaxation time at constant strain. As is secn from thc prcceding result for largcr coupling.
th~' peak loss factor is less than half the relaxation strength and is observed at a lower
freq uency.

Note that no special physical interpretation or units necd be given to the augmenting
field in order to use this modcling method given experimental data. In that case. the
relaxation stn:ngth and time may be determined from the data. the material property II
from the second of eqn 2b. and properties:x and () from the first of eqns 2b (non-uniquely).

As descrihed in Lesieutre and Mingori (1990). an alternate form of the governing
equations for uniaxial vihration may be developed and used to advantage in the formulation
of tinite elements. In terms of ~'. the gradicnt of the ~-field. the equations may he expressed
as follows:

pii - Ell" = - J,'

(3)

This formulation eontains only even spatial derivatives. a result which leads to some
henefits in numerical solution. such as symmetric clement submatrices and good approxi­
mation of the relative magnitudes of the imaginary and real parts of complex eigenvalues
(even whcn the absolute magnitude is not well-approximated).

3.1.2. Filli(e eh'II/I'1I1 (re/l(lI/ell(. Previous work (Lesieutre. \989) has shown the II-~'

form of the governing equations (eqn 3) to be supt:rior to the II-~ form (eqn I). in terms
of co l1\ergel1l:e of finite clement solutions. and is employed exclusively herein. The reason
for the better performance is not fully understood as of this writing. but may have to do
with consistent interpolation of the displacement and augmenting fields.

Consider a single element of length L and cross-sectional area A. as shown in Fig. I.
Thc mcchanical displ'lcemcnt field ovcr the c1emcnt lI(X). is approximatcd using a linearly­
varying interpolation function. and the augmenting field. ,·(x). is similarly approximated.
As described in detail in Lesieutre. (1989). the method of weighted residuals (MWR) is
used to develop element matrices. The same functions used to approximate the behavior of
the dependent fields in the spatial region bounded by the element are used as weighting
functions. Because it can reduce the order and continuity required of assumed approximate
displaccmcnt fields. integration by parts is an important part of thc process of devcloping
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Mechanical displacement field

Augmenting thermodynamic fields

Fig. I. The linear linear ";' tinite element.

elcmcnt matril:cs in MWR. and is used herc. Intcgrating thc weighted equations over tht:
length of thc dcmcnt and minimizing thc residual leads to the following elemcntalmatrix
equations of evolution:

Mq+Kq = -Bp

Cp+Hp = -Fq

where q is the vedor of nodal mechanical displacements and p is the vector of nodal ATF
displacements.

If thc dcmcntal dcgrccs of freedom are ordered to facilitatc asscmbly as:

the elemental equations may be expressed alternatively in first-order form as:

Ax+Bx = 0

where the element matrices for AFT-damped uniaxial rod finite elements are:

(~~L) 0 0 (P~L) 0 0

0 0 0 0 0

0 0 (.-fi) 0 0 (.46~)
A=

(~.~~) 0 0 (p~~~) 0 0

0 a 0 a 0

0 0 (:~) a 0 C~~)
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0 (E~4) (J~L) 0 (_E~) (6~L)

-I 0 0 0 0 0

0 (~b~4) (B;L) 0 (_ ~6LA) (B.:L)
B=

0 (_E~4) (b,~L) 0 (E~A) (J~L)

0 0 0 -I 0 0

0 (_~J~4) (B~L) 0 (B::) (B.~L )
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(4)

[n order to evaluate the performance of this formulation of the ATF-damped rod
element with high damping. a specific boundary-value eigenvalue problem is addressed.
namely. the determination of the natural modes of longitudinal vibration ofa free-free rod.
The results arc compared to those expected on the basis of the approximate analysis
described in the preceding section. Element matrices arc assembled into global system
matrices (A and H) using the usual "direct stiffness" technique of structurallinite element
analysis.

Assuming a solution for xU) in the form e". the following eigenvalue problem is
defined:

p.A+B]x = O.

The matrix equations of motion an: formulated and this problem solved to yield
complex eigenvalues. ;.. and eigenvectors. x. The damping ratio for each mode is calculated
as the ratio of the negative of the real part of the eigenvalue to the total magnitude. The
modal damping ratio. ~. is then plotted against the imaginary part of the eigenvalue. As
noted in Lesieutre (1989). the spectrum ofeigenvalues generally contains "vibration modes".
"relaxation modes" and "rigid-body modes". In the complex plane, the damped vibration
modes lay near the imaginary axis, slightly in the left half plane with negative real parts;
the relaxation modes lie on the negative real axis. These relaxation modes are characteristic
of the response of the " field.

Two specific cases were considered numerically: (I) "light" coupling. with a relaxation
strength of 0.125; and (2) "strong" coupling, with a relaxation strength of 1.25. The
numerical parameter values used for this example problem were (in arbitrary, consistent
units) :

A = 1.0
Eu = 10.0 (in "light coupling" case)

20.0 (in "strong coupling" case, gives the same E,)
p = I.
B = 10.0
~ = () = IOi9 ("light coupling")

\00/9 ("strong coupling")
L r = 1.0 (nominal total length of rod; other lengths ranging from 0.1 to 10.0 were

also used to shift the modal frequencies up or down. respectively).

Figure 2 shows typical numerical results yielded by this approach. using \0 damped
rod clements. Each point indicates the frequency and damping of a single vibration mode.
In order to determine the modal damping ratios over a wide range of frequencies. several
rod lengths were used. shifting the modal frequencies. This shifting is apparent in Fig. 2 as
two groups of modes for each case. one below the frequency at which peak damping is
observed. and one above.
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The numerical finite element results of the boundary-value eigenvalue problem agree
quite well with those e\pected on the basis of the material properties. For the light coupling
case. the peak damping ratio compares well with the predicted value of 0.031. and is
ohserved at the predicted value of 10, For stronger coupling. the peak damping ratio agrecs
well with the predicted value of 0.26. and is ohscrved at the prcdicted value of 6.7. Note
that while the rela\ed (I,lw-frequency) modulus is identical in both cases. thc unrela\cd
(high-frequency) nHldulus is a factor of 2 highcr for the case of strong coupling. The ellccl.
apparent in the tinite element results. is that the ratio of modal frequencies for the case with
stronger coupling to the case with light coupling is cqual to I at low frequcncies. and
appro,lches ,2 at high frequencies. The AT/-' modeling technique evidcntly captures the
essential frequency-dependence of material modulus as well as that of damping.

The modal frequencies calculated from the finite element analysis only approximate
the actual solutions to the PDE. with accuracy generally decreasing with increasing mode
numher and increasing with the number of dements. As noted previously. the usc of the
II ;. form of the governing equations with linear-interpolation in linite dement analysis
app,lrently preserves the relative magnitudes of the imaginary and real parts of complex
eigenvalues. even when the absolute magnitude is not well-approximated. The II"~ form of
the equations. similarly interpolated. docs not. even though the solutions converge to the
same cigcnvalues as thc number of dcments is increased.

The relationship betwcen loss factor and modal damping ratio with strong coupling
is. in general. complicated and depends on the specific constitutive law used to describe
material behavior. For a standard anelastic solid. the peak modal damping ratio may be
found using the following procedure [adapted from Nowick and Berry (1972)] :

( I) Determine the peak loss factor using the first of eqns 2b.
(2) Determine the corresponding peak loss angle using:

(Pill." = tan I (11m .•.) (exact).

(I) Estimate the peak log dccremcnt. (51ll.". using thc following equation with a first­
order corrcetion tcrm :

H) Determinc thc peak modal damping ratio using:
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3.2. All/ltiple uugmenting fields
3.2.1. Gorerning equations. In this section. the use of multiple ATF is considered. the

motivation being to better approximate experimental data for engineering materials. As
previously noted. these materials often exhibit properties with frequency-dependence weaker
than that of standard anelastic solids. The development follows that of the preceding
section. but introduces N augmenting fields to interact with the mechanical displacement
field. The material constitutive relations take the form:

where the ~i are "normal internal variables" (Nowick and Berry. 1972) and are not coupled
to one another.

The relaxation equations for each ~, take the form:

J (_ (15,)).;, = - B, .;, - ;, I: .

The governing partial differential equations in terms of the '1j and the gradients of the
~,. are:

,v

{Iii - Ell" = - L 15,1,
, .. I

. B (B,J,) ..
y,+ If', = ~t 1I.

Note that the relationship between E, and Eu may now be expressed as:

where the individual ATF rel'lxation strengths, ~,. are given by:

In addition. the complex modulus may be expressed as:

E* = E,(I + r. ~j ~~tJiB,)~ -=)+iE,(t~, (w/B,) i)'
i.1 1+ (w}B,) /.1 1+(w/B,)

(5)

3.2.2. Finite elemellt treatment. The preceding form of the governing equations (eqn
5) is used as the starting point for the development of finite element matrices. An extension
of the technique described in the earlier section for a single ATF is used. introducing
additional approximating and weighting functions as appropriate. If the elemental degrees
of freedom are ordered as:
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Fig. 3. Comparison of fre4uem:y·dependen~eof modal damping r.ttios using one and two aug­
menting tields-materials have the same asymptotic moduli.

the element matrices for multiple-ATF-damped uniaxial rod finite clements can be
developed and arc given in Ihe appendix.

Several numerical experiments wen: performed to investigate the performance of this
formulation of an ATF-d,tmped uniaxial rod clement with multiple augmenting fields.
Three cases were of particular interest: (I) the usc of two ATF with widely separated
relaxation times; (2) the achievement ofa nearly constant loss 1~lctor over a broad frequency
range as a me,lns of approximating "structural" or "hysteric" damping in a time-domain
dynamic model; and (3) the achievement of the typically weaker frequency-dependent loss
factor characteristic of the "fral:tional derivative" model. Ten clements were used in alll:ases,
while the towI rod length was allowed to vary in order to change the modal frequencies as
needed to investigate behavior in different regions of frequency.

Figure 3 illustrate the results obtained with the use of two augmenting fIelds with
widely separated relaxation times, in terms of modal damping ratio versus frequency. For
comparison, the results obtained using a single augmenting field are included. The material
parameters were chosen to yield the same total relaxation magnitude and the same asymp­
totic dynamic moduli.

The numerical parameter values used for this example problem were (in arbitrary,
consistent units) :

A = 1.0
Eu = 10.0
p = 1.
B I = 10.0, 8 2 = 200
II = 0.125 (<5 = :< = 10/9 for one ATF)

(<5 = :< = 5/9 for two ATF)
LT = 1.0 (nominal total length of rod; other lengths ranging from 0.1 to 10.0 were

also used to shift the modal frequencies up or down, respectively).

The contributions of the individual ATF to modal damping ratios in different frequency
regions arc apparent. Note also that the modal frequencies arc identical in the high and
low frequency ranges (consistent with identical asymptotic moduli), but differ slightly in
between due to the different frequency-dependence of material moduli.

Figure 4 illustrates the results obtained with the use of three augmenting fields equally­
spaced in log frequency, in terms of modal damping ratio versus frequency. The material
parameters used are similar to those used in the preceding example, with the individual
relaxation magnitudes equal to one another and each Bi + I a factor of 8.4 larger than Bi

(with 8 1 = 10). Note that the modal damping ratios are essentially flat over a significant
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Fig. 4. Comparison of frequency-dependence of modal damping ratios using three augmenting
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fn:quenl:y range. Thus. the ATF modeling method is seen as a potential way to approximate
"structural" or "hysteretic" damping in the time domain.

Figure 5 illustrates the results obtained with the use of three augmenting fields equally
spaced in log frequency (by a factor of7). in terms of modal damping ratio versus frequency.
The material parameters used arc similar to those used in the preceding example. with the
individual relaxation magnitudes adjustcd to yield apparcnt frequency dependence weaker
than that of a comparablc anelastic solid (a single ATF). The slope of the tangent dashed
curve in Fig. 5 is approximately ±O.53. considcrably less than than the slope of ± I
characteristic of the rcsponse using a single ATF. Evidently. the ATF modeling method
provides a possiblc means of approximating the behavior of materials described by the
"fractional dcrivativc" model-albeit ovcr a limited frequency range. but in a way that is
compatible with existing finite element analysis tools.

4. SUMMARY AND CONCLUSIONS

A physically-motivated time-domain model that preserves the characteristic frequency­
dependent properties of real materials. a model compatible with current computational
structural analysis methods. continues to be developed. Termed the Augmenting Thermo­
dynamic Fields (ATF) method. its key feature is the intrpduction of additional fields to
interact with the displacement field of continuum structural dynamics.
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Earlier results involving light damping achieved with a single augmenting field have
been extended to high damping and the use of multiple fields. The numerical finite element
results of boundary-value eigenvalue problems for longitudinal vibrations of a rod made
from a single material agree quite well with those expected on the basis of the material
properties. The signiticance of this agreement it that is may be expected to carryover into
applications involving complex. irregular structures made from many materials. The results
indicate that the ATF method may be an effective way to accommodate frequency-depen­
dent material properties in engineering design and analysis.
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APPENDIX: ELEMENTAL MATRICES FOR UNIAXIAL ROD FINITEI:LEME:"TS WITII
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