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Abstract—New developments in a method of modeling frequency-depedent material damping and
modulus in structural dynamics analysis are reported. The fundamental feature of the general method
is the introduction of augmenting thermodynamic ficlds (ATF) to interact with the mechanical
displacement field of continuum mechanics. These ATF are directly motivated by the “internal state
variables™ of materials science. The coupled partial ditferential equations which govern the dynamic
behavior of a uniaxial rod are numerically solved within the computational framework of the finite
clement method, resulting in "ATF-damped™ finite clements. Previous work in the development of
this modeling technigue is characterized by the use of a single augmenting field, with application to
lightly-damped rods, beams and truss structures. New developments include @ (1) demonstration of
the ability to model the behavior of high-damping materials ; and (2) the use of multiple augmenting
fictds to model materials whose behavior departs significantly from that of standard anclastic solids.

NOMENCLATURE

aflinity, thermodynamically conjugate to augmenting thermodynamic ficld

ATE first-order clement or system martrix (“augmented mass matrix™)

mverse of the relaxation time constant at constant strain

ATFE zeroth-order clement or system matrix (“Caugmented stiffness matrix™)
coupling matrix that relates p to equations of evolution for q

complex modulus

storage modulus

loss modulus

relaxed (fow-frequency) Young's modulus

unrelaxed thigh-frequency) Young's modulus

constant of proportionality between the rate of change of an augmenting ficld and the corresponding
aflinity

totad fength of rod

vector of discrete ATFE displacements

vector of discrete mechanical displacements

mechanicul longitudinal displacement field for uniuxial rod element

independent variable for uniaxial rod element, reference position of mass particle
veetor of element or globul degrees of freedom (combines p and g)

material property that couples an augmenting field to the longitudinal normal stress
material property that couples an augmenting field to the corresponding aflinity
relaxation magnitude

longitudinai normal strain ficld in uniaxial rod ¢lement

frequency-dependent material loss tuctor, ratio of loss modulus to storage modulus
augmenting ficld. gradient of $(x)

complex aigenvalue

mass density in the reference configuration

longitudinal normal stress field in uniaxial rod clement

radian frequency

ith augmenting thermodynamic ficld (ATF)

modal damping ratio.

1. INTRODUCTION

Vibration damping is essential to the attainment of performance goals for a variety of
advanced engincering systems. In common built-up structures which operate in the atmo-
sphere, air damping and joint damping typically dominate system damping. However,
material damping can also be an important contributor to overall damping in many
applications, such as precision spacecraft structures in orbit. While considerable effort has
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gone into the development of high-damping non-structural and structural materials for use
in acrospace vibration control. sensitivity to temperature and frequency complicates their
use. The development of analytical tools capable of dealing directly with frequency-depen-
dent material properties in particular 1s an area of current research with potential for high
pay-off.

Current popular treatments of damping in structural dynamics are unable to reproduce
the fundamental frequency-dependent behavior of real materials. However. structural dyna-
micists are the unintended beneficiaries of a sizable literature on material damping (Ashley,
1982). For many years. crystallographers and metallurgists have used “internal friction™
as a probe into the underlying structure of materials. By measuring damping as a function
of frequency. temperature. deformation type and amplitude, they have investigated the
mobility and activation energies of various microstructural features ot materials. These
researchers have identified a multitude of internal variables and relaxation mechanisms that
range, in geometrical scule, from crystal lattice dimensions to structural dimensions and. in
temporal scale, over a similarly broad range (Nowick and Berry, 1972 Zener, 1948).

Thts observation provided the motivation for the initial development of the augmenting
thermodynamic fields (ATF) modeling method (Lesieutre and Mingori, 1990; Lesieutre.
1989)—a time-domain continuum model of material damping that preserves the charac-
teristic frequency-dependent behavior of real materials (damping and modulus)—a phys-
wcally-motivated model fully compatible with current finite element structural analysis
methods. This paper reports new developments in the ATF modeling method. specifically
the capabilitics to model the behavior of high-damping materials and, through the use of
multiple augmenting ficlds, the behavior of materials that depart significantly from that of
standard anclastic solids. These results indicate that the ATF method may be an cffective
way o accommodate frequency-dependent material propertics in engineering structural
design and analysis.

2. RELATED RESEARCH

Several methods for incorporating material damping into structural models have been
uscd, and continue to be used within the engineering community. These methods include
viscous dumping, frequency-dependent viscous damping, complex modulus, hysteretic
damping. structural damping. viscoelasticity, hereditary integrals und model damping (Bert,
1973; Hobbs, 1971). Each has some utility. but cach suffers from one flaw or another.
Although some potentially accurate models exist (e.g. viscoelasticity), they are not widely
used in the engineering community - perhaps because of the lack of physical motivation
for. or the difliculty of use of, such models.

The need to better accommodate frequency-dependent material propertics in engin-
cering structural dvanamic analysis has motivated several new relevant developments.
Important results in the recent literature include those reported in Golla and Hughes (1985),
McTavish and Hughes (1987). Bagley and Torvik (1983), Torvik and Bagley (1987),
Padovan (1987) and Scgalman (1987).

Golla, Hughes and McTavish (GHM) developed a time-domain finite clement treat-
ment of linear viscoclasticity that is most closely related to the subject ATF method. The
ATF mecthod is primarily distingaished from the GHM approach in that it is a direct time-
domain formulation, amenable to numerical treatment using conventional finite clement
methods. Like ATF, GHM employs additional coordinates to more accurately model
damping. However, the “dissipation coordinates™ of GHM arc internal to individual
elements. while the augmenting thermodynamic ficlds of ATF are continuous from element
to element.

The core of Bagley and Torvik’s material damping model is the use of fractional time
derivatives in material constitutive equations. Their development was motivated by the
observation that the frequency dependence observed in real materials is often weaker than
the dependence predicted by first-order viscoelastic models. Padovan recently demonstrated
efficient. stable transient solution algorithms for finite element simulation of viscoelastic
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problems involving fractional operators. However, the computational requirement to store
a truncated time history seems tantamount to the introduction of additional coordinates.

Segalman addressed the calculation of stiffness and damping matrices for structures
made from linear viscoelastic materials. His is essentially a perturbation technique that
avoids the introduction of additional coordinates. The resulting stiffness and damping
matrices are. however, generally unsymmetric, and the assumption of “*small viscoelasticity”
is likely to limit the utility of the approach.

In recent years, the modal strain energy (MSE) modeling method for estimating the
damping of materials and structures from the measured damping of constituent materials
has continued to grow. However, all of the preceding approaches have advantages over this
now-conventional MSE method in that they are time-domain models, modal damping may
be calculated concurrently with model frequency (no look-up tables or iterative procedures
are required to converge on both). and the resulting complex modes more accurately reflect
the relative phase of vibration at various points on a structure.

3. UNIAXIAL ROD VIBRATION

As previously noted, the physically-significant “internal state variables™ of materials
science play a central role in this work, motivating the introduction of augmenting ther-
modynamic fields (ATF) to interact with the mechanical displacement ficld. Coupled
material constitutive relations and partial differential equations (PDE) of evolution are
developed for a uniaxial structural rod and the PDE arce solved numerically using the finite
clement method.

The results of an investigation of two cases of interest are described herein, The first
case addresses the applicability of the ATF modeling method to high-damping materials,
while the second addresses the use of multiple augmenting ficlds to approximate material
behavior that exhibits frequency-dependence weaker than that of a standard anclastic solid. In
both cases, Fourier analysis yickls an equation for the etfective complex modulus of a
material described using augmenting fields, and the resulting expected relationship between
damping and frequency is verified through finite element solution of free vibration cigen-
value problems.

3.1. High damping materials : single ATF

3.1.1. Gorerning equations. Consider the case of one-dimensional motion, cor-
responding to longitudinal vibration of a thin rod. The mechanical displacement along the
rod is denoted by u(x), the longitudinal normal strain by e(x) = #'(x), and the rod has
uniform mass density p and unrelaxed modulus of elasticity E,. A single augmenting
thermodynamic field, £(x), is introduced. The fields thermodynamically conjugate to £(x)
and &(x) are the stress, o(x), and the affinity, A(x). The affinity can be interpreted as a
thermodynamic “*force” driving & towards equilibrium. The material property & describes
the strength of the coupling of the two dependent fields, « and ¢. Analogously, « is the
material property that relates local changes in 4 to those in £. Following Nowick and Berry
(1972) and Lesieutre and Mingori (1990), the material constitutive equations may be found
as:

6= E,e—6¢

A =de—uZ.

The usual one-dimensional stress-strain constitutive relations are seen to be augmented by
an additional term in £. The equation of evolution for the mechanical displacement field is
developed from consideration of momentum balance (with zero body forces assumed). The
equation of evolution for the augmenting thermodynamic field, &(x). is found by assuming
that the local rate of change of { is proportional to 4 or. equivalently, that the rate of
change of ¢ is proportional to its deviation from a local equilibrium value, & (that value of
& at which 4 = 0). The result is a first-order differential equation:
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This 1s a reluxation equation, and describes how the augmenting field evolves towards a

new equilibrium state through a finite-rate kinetic process. The material property B is the

inverse of the relaxation time constant (at constant strain). A material modeled using a

single augmenting field is essentially a continuum version of a standard anelastic solid.
The resulting partial differential equations of evolution couple u« and &:

,

o v

pli—E " = —

)

s e (B0

;+B;=<~)u. (1)
x

A bilinear variational principle that generates these equations has also been developed
(Lesieutre, 1992), and it leads to insight concerning the boundary conditions on the mech-
anical displacement and augmenting thermodynamic ficlds. The augmenting thermo-
dynamic field is essentially an internal field. i.c. there are no explicit boundary conditions
that it alone must satisfy, However, the mechanical displacement ficld must satisfy cither
displacement (“geometric™) or stress (“natural™) boundary conditions at each end of the
rod. as is the case in undamped structural dynamics. Note that the stress boundary condition
does involve the augmenting ficld, .

As shown in Lesicutre (1989) for small damping, the damping and effective modulus
for a matcrial described by eqns | are frequency-dependent. An approximate cquation for
the loss factor, 7. is:

The peak loss factor is approximately equal to ¢°/2£,x and is observed at @ = B.
For an arbitrary level of damping, similar analysis results in the following expression
for the complex modulus of the material :

E*=E+iE" =|E, ~- O >+i<(,~:/z) (t/B) )
- = ¢ l-i‘-((:)/B)2 @ |+((1)/B): .

Defining the relaxed (low-frequency) modulus, £, as:

()‘.
Er = Eu -
and the relaxation strength, A, as:
A S°
T Ea

the expression for the complex modulus may be expressed alternatively as:
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E,._E<1+A (e B) >+iE<A-——-(“’"B) )
o I +(w B) "\ l+(wBY/)

The loss factor may subsequently be found as the ratio of the loss modulus to the storage
modulus:

_ _ < 2(w'B) > )
T T+ w B): . ™\ ¥ (w B) -

where the peak loss factor. n..,.. and frequency at which this peak is observed. B8, are given
by:

_ B
and B=-

- . R/
(+A)" (=0)

Hinaxw = 2'(—]:7A~)~|¥5

These results are identical to those presented in (Nowick and Berry. 1972) for a
stundard anclastic solid. Light coupling between the mechanical disptacement field and the
augmenting thermodynamic field results in small damping, with a peak loss factor of
approximately half the relaxation strength, at a frequency equal to the inverse of the
relaxation time at constant strain. As is scen from the preceding result for larger coupling,
the peak loss factor is Jess than hall the relaxation strength and is observed at a lower
frequency.

Note that no special physical interpretation or units need be given to the augmenting
ficld in order to use this modeling method given experimental data. In that case. the
relaxation strength and ume may be determined from the data, the material property 8
from the second of eqn 2b, and propertics x and 0 from the first of eqns 2b (non-uniquely).

As deseribed in Lesicutre and Mingori (1990), an alternate form of the governing
equations tor uniaxial vibration may be developed and used to advantage in the formulation
of finite clements. In terms of 7, the gradient of the &-field, the equations may be expressed
as follows:

pii— Eu” = < Jy

T+ 8y (3)

I
oo
R;:"
S—

This formuliation contains only even spatial derivatives, a result which leads to some
benefits in numerical solution, such as symmetric element submatrices and good approxi-
mation of the relative magnitudes of the imaginary and real parts of complex cigenvalues
(even when the absolute magnitude 1s not well-approximated).

3.1.2. Finite element trearment. Previous work (Lesicutre, 1989) has shown the w-y
form of the governing equations (eqn 3) to be superior to the - form (eqn 1), in terms
of convergence of finite clement solutions, and is employed exclusively hercin. The reason
for the better performance is not fully understood as of this writing, but may have to do
with consistent interpolation of the displacement and augmenting ficlds.

Consider a single clement of length L and cross-sectional area A, as shown in Fig. 1.
The mechanical displacement field over the element u(x). is approximated using a lincarly-
varying interpolation function. and the augmenting field, ¥(.v), is similarly approximated.
As described in detail in Lesicutre, (1989). the method of weighted residuals (MWR) i
used to develop element matrices. The same functions used to approximate the behavior of
the dependent ficlds in the spatial region bounded by the element are used as weighting
functions. Because it can reduce the order and continuity required of assumed approximate
displacement fields. integration by parts is an important part of the process of developing
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Fig. I. The linear hinear w5 finite element.

element matrices in MWR, and is used here. Integrating the weighted equations over the
length of the element and minimizing the residual leads to the following clemental matrix

cquations of evolution :

Mg +Kg = —-Bp
Cp+Hp = —Fq

where q is the vector of nodal mechanical displacements and p is the vector of nodal ATF

displacements.
It the elemental degrees of freedom are ordered to facilitate assembly as:

X=[¢ 4 piig: g pl
the elemental equations may be expressed alternatively in first-order form as:
Ax+Bx =10

where the element matrices for AFT-damped uniaxial rod finite elements are:

A=




Finite clements for dynamic modeling 1573

o (%) () o (%) (%)
)

4

TN
<
o\‘}_
(\
N—’
o
2]
c
N
N’
N
<.
\:n n
h
SN—

) () o (B ()

In order to evaluate the performance of this formulation of the ATF-damped rod
element with high damping. a specific boundary-value eigenvalue problem is addressed.
namely. the determination of the natural modes of fongitudinal vibration of a free-free rod.
The results are compared to those expected on the basis of the approximate analysis
described in the preceding section. Element matrices are assembled into global system
matrices (A and B) using the usual “direct stiftness™ technique of structural finite clement
analysis.

Assuming a solution for x(r) in the form ¢*, the following cigenvalue problem is
defined :

[JA+B]x = 0.

The matrix equations of motion are formulated and this problem solved to yicld
complex eigenvalues, 4, and eigenvectors, X. The damping ratio for cach mode is caleulated
as the rutio of the negative of the real part of the cigenvalue to the total magnitude. The
modal damping ratio, ¢, is then plotted against the imaginary part of the cigenvalue. As
noted in Lesicutre (1989), the spectrum of eigenvalues generally contains “vibration modes™,
“relaxation modes™ and “rigid-body modes™. In the complex plane, the damped vibration
modes lay near the imaginary axis, slightly in the left half plane with negative real parts;
the relaxation modes lie on the negative real axis. These relaxation modes are characteristic
of the response of the ¢ field.

Two specific cases were considered numerically : (1) “light” coupling, with a relaxation
strength of 0.125; and (2) “strong” coupling, with a relaxation strength of 1.25. The
numerical parameter values used for this example problem were (in arbitrary, consistent
units) :

A =10

E, = 10.0 (in “light coupling™ case)

20.0 (in *'strong coupling™ case, gives the same E;)
p =1
B =100

2 =0 =109 ("hghtcoupling™)
100/9 (strong coupling™)

Ly = 1.0 (nominal total length of rod: other lengths ranging from 0.1 to 10.0 were
also used to shift the modal frequencics up or down, respectively).

Figure 2 shows typical numerical results yielded by this approach, using 10 damped
rod elcments. Each point indicates the frequency and damping of a single vibration mode.
In order to determine the modal damping ratios over a wide range of frequencies, several
rod lengths were used. shifting the modal frequencies. This shifting is apparent in Fig. 2 as
two groups of modes for each case, onc below the frequency at which peak damping is
obscrved. and one above.
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Fig. 2. Compuarnison of frequency-dependence of modal damping ratios for weak and strong coupling
with a single augmenting ficld —matertals have the same unrelaxed moduli and relaxation time.

The numerical finite clement results of the boundary-value eigenvalue problem agrece
quite well with those expected on the basis of the material properties. For the light coupling
case, the peak damping ratio compares well with the predicted value of 0.031. and is
observed at the predicted value of 10. For stronger coupling. the peak damping ratio agrees
well with the predicted value of 0.26, and is observed at the predicted value of 6.7. Note
that while the relaxed (low-frequency) modulus is identical in both cases, the unrelaxed
{high-trequency) modulus is a factor of 2 higher for the case of strong coupling. The effect,
apparent in the linite element results, is that the ratio of modal frequencies for the case with
stronger coupling o the case with light coupling is equal to | at low frequencies, and
approaches \/”2 at high frequencies. The ATE modeling technique evidently captures the
essential frequency-dependence of material modulus as well as that of damping.

The modal frequencies caleulated from the finite element analysis only approximate
the actual solutions to the PDE, with accuracy generally decreasing with increasing mode
numbcer and increasing with the number of elements. As noted previously, the use of the
17 form of the governing equations with lincar-interpolation in finite clement analysis
apparently preserves the relative magnitudes of the imaginary and real parts of complex
cigenvalues, even when the absolute magnitude is not well-approximated. The u-& form of
the equations, similarly interpolated. does not, even though the solutions converge to the
same cigenvalues as the nwmber of elements is increased.

The relutionship between loss factor and modal damping ratio with strong coupling
is. in general, complicated and depends on the specific constitutive law used to describe
matertal behavior. FFor a standard anelastic solid, the peak modal damping ratio may be
found using the following procedure {adapted from Nowick and Berry (1972)):

(1) Determine the peak loss factor using the first of ¢gns 2b.
(2) Determine the corresponding peak loss angle using :

(/)IH.K\ = llll] : ()lmux) (cxil‘:l)'

(3) Estimate the peak log decrement, d,,,... using the following equation with a first-
order correction term ;

Spun = {1 — \,/l —2¢u)  (approximate).

(4) Determine the peak modal damping ratio using:
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S5 [
Cmax = (——"35——) (exact).
) ér;mx + (-7[)-

3.2 Multiple augmenting fields

3.2.1: Governing equations. In this section. the use of multiple ATF is considered. the
motivation being to better approximate experimental data for engineering materials. As
previously noted. these materials often exhibit properties with frequency-dependence weaker
than that of standard anelastic solids. The development follows that of the preceding
section, but introduces N augmenting fields to interact with the mechanical displacement
field. The material constitutive relations take the form:

where the & are *‘normal internal variables™ (Nowick and Berry. 1972) and are not coupled
to onc another.
The relaxation equations for each , take the form:

()
G = —'B‘ [ Eal B U B
%,

The governing partial differential equations in terms of the y, and the gradients of the
g, are:

v
pi—Eu’ = ~ Z S5,

B.J,
};I+Bl?l = ( ! )ll”. (5)

%

Note that the relationship between E, and £, may now be expressed as:

N
E, = E,(l+ Y A,)
=1

where the individual ATF relaxation strengths, A,. are given by

‘5.‘
A =
E 1

In addition, the complex modulus may be expressed as:

: v (u;B) M {w/B) ]
£ (“’ZA (B )’LE(ZA 1+(w/3,)2)'

i= N

5) is used as the starting point for thc developmcnt of finite element matrices. An extension
of the technique described in the earlier section for a single ATF is used, introducing
additional approximating and weighting functions as appropriate. If the elemental degrees
of freedom are ordered as:
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Fig. 3. Compurison of frequency-dependence of modal damping ratios using one and two aug-
menting fields—materials have the sume asymptotic moduli.
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the element matrices for multiple-ATF-damped uniaxial rod finite elements can be
developed and are given in the appendix.

Several numerical experiments were performed to investigate the performance of this
formulation of an ATF-damped uniaxial rod clement with multiple augmenting ficlds.
Three cases were of particular interest: (1) the use of two ATEF with widely separated
relaxation times ; (2) the achievement of a nearly constant loss tuctor over a broad frequency
range as a means of approximating “structural™ or “hysteric™ dumping in a time-domain
dynamic model ; and (3) the achicvement of the typically weaker frequency-dependent loss
factor characteristic of the “fractional derivative™ model. Ten elements were used in all cascs,
while the total rod length was allowed to vary in order to change the modal frequencies as
needed to investigate behavior in different regions of frequency.

Figure 3 illustrate the results obtained with the use of two augmenting ficlds with
widely separated relaxation times, in terms of modal damping ratio versus frequency. For
comparison, the results obtained using a single augmenting field are included. The material
parameters were chosen {0 yield the same total relaxation magnitude and the same asymp-
totic dynamic moduli.

The numerical parameter values used for this example problem were (in arbitrary,
consistent units) :

A =10
E, =10.0
p =1

B, =10.0, B,=200
A =0.125 (6 = 2= 10/9 for one ATF)
(8 = 2= 5/9 for two ATF)
Lt = 1.0 (nominal total length of rod; other lengths ranging from 0.1 to 10.0 were
also used to shift the modal frequencies up or down, respectively).

The contributions of the individual ATF to modal damping ratios in different frequency
regions are apparent. Note also that the modal frequencies are identical in the high and
low frequency ranges (consistent with identical asymptotic moduli), but differ slightly in
between due to the different frequency-dependence of material moduli.

Figure 4 illustrates the results obtained with the use of three augmenting fields equally-
spaced in log frequency, in terms of modal damping ratio versus frequency. The material
parameters used are similar to those used in the preceding example, with the individual
relaxation magnitudes equal to one another and each B,., a factor of 8.4 larger than 8,
(with B, = 10). Note that the modal damping ratios are essentially flat over a significant
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Fig. 5. Comparison of frequency-dependence of modal damping ratios using three augmenting
fields—approximates “fractional derivative™ behavior over a limited frequency range.

frequency range. Thus, the ATF modeling method is seen as a potential way to approximate
“structural™ or “*hysteretic”” damping in the time domain.

Figure 5 tllustrates the results obtained with the use of three augmenting fields equally
spaced in log frequency (by a factor of 7), in terms of modal damping ratio versus frequency.
The material parameters used are similar to those used in the preceding example, with the
individual relaxation magnitudes adjusted to yicld apparent frequency dependence weaker
than that of a comparable anelastic solid (a single ATF). The slope of the tangent dashed
curve in Fig. 5 is approximately +0.53, considerably less than than the slope of +1
characteristic of the response using a single ATF. Evidently, the ATF modeling method
provides a possible means of approximating the behavior of materials described by the
“fractional derivative™ model—albeit over a limited frequency range, but in a way that is
compatible with existing finite element analysis tools.

4. SUMMARY AND CONCLUSIONS

A physically-motivated time-domain model that preserves the characteristic frequency-
dependent properties of real materials, a model compatible with current computational
structural analysis methods, continues to be developed. Termed the Augmenting Thermo-
dynamic Fields (ATF) method, its key feature is the intrpduction of additional fields to
interact with the displacement field of continuum structural dynamics.
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Earlier resuits involving light damping achieved with a single augmenting field have
been extended to high damping and the use of multiple ficlds. The numerical finite element
results of boundary-value eigenvalue problems for longitudinal vibrations of a rod made
from a single material agree quite well with those expected on the basis of the material
properties. The signiticance ol this agreement it that is may be expected to carry over into
applications involving complex, irregular structures made from many materials. The results
indicate that the ATF method may be an effective way to accommodate frequency-depen-
dent material properties in engineering design and analysis.
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APPENDIX: ELEMENTAL MATRICES FOR UNIAXIAL ROD FINITE ELEMENTS WITH
MULTIPLE-ATF
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